请输入关键字
请输入关键字
订购
*国家
中国
美国
中国香港
中国澳门
中国台湾
阿尔巴尼亚
阿尔及利亚
阿根廷
阿拉伯联合酋长国
阿鲁巴
阿曼
阿塞拜疆
阿森松岛
埃及
埃塞俄比亚
爱尔兰
爱沙尼亚
安道尔
安哥拉
安圭拉
安提瓜和巴布达
奥地利
奥兰群岛
澳大利亚
巴巴多斯
巴布亚新几内亚
巴哈马
巴基斯坦
巴拉圭
巴勒斯坦领土
巴林
巴拿马
巴西
白俄罗斯
百慕大
保加利亚
北马里亚纳群岛
贝宁
比利时
冰岛
波多黎各
波兰
波斯尼亚和黑塞哥维那
玻利维亚
伯利兹
博茨瓦纳
不丹
布基纳法索
布隆迪
朝鲜
赤道几内亚
丹麦
德国
迪戈加西亚岛
东帝汶
多哥
多米尼加共和国
多米尼克
俄罗斯
厄瓜多尔
厄立特里亚
法国
法罗群岛
法属波利尼西亚
法属圭亚那
法属南部领地
梵蒂冈
菲律宾
斐济
芬兰
佛得角
福克兰群岛
冈比亚
刚果(布)
刚果(金)
哥伦比亚
哥斯达黎加
格恩西岛
格林纳达
格陵兰
格鲁吉亚
古巴
瓜德罗普
关岛
圭亚那
哈萨克斯坦
海地
韩国
荷兰
荷属加勒比区
荷属圣马丁
黑山
洪都拉斯
基里巴斯
吉布提
吉尔吉斯斯坦
几内亚
几内亚比绍
加拿大
加纳
加纳利群岛
加蓬
柬埔寨
捷克
津巴布韦
喀麦隆
卡塔尔
开曼群岛
科科斯(基林)群岛
科摩罗
科索沃
科特迪瓦
科威特
克罗地亚
肯尼亚
库克群岛
库拉索
拉脱维亚
莱索托
老挝
黎巴嫩
立陶宛
利比里亚
利比亚
联合国
列支敦士登
留尼汪
卢森堡
卢旺达
罗马尼亚
马达加斯加
马恩岛
马尔代夫
马耳他
马拉维
马来西亚
马里
马其顿
马绍尔群岛
马提尼克
马约特
毛里求斯
毛里塔尼亚
美国本土外小岛屿
美属萨摩亚
美属维尔京群岛
蒙古
蒙特塞拉特
孟加拉国
秘鲁
密克罗尼西亚
缅甸
摩尔多瓦
摩洛哥
摩纳哥
莫桑比克
墨西哥
纳米比亚
南非
南极洲
南乔治亚和南桑威奇群岛
南苏丹
瑙鲁
尼加拉瓜
尼泊尔
尼日尔
尼日利亚
纽埃
挪威
诺福克岛
帕劳
皮特凯恩群岛
葡萄牙
日本
瑞典
瑞士
萨尔瓦多
萨摩亚
塞尔维亚
塞拉利昂
塞内加尔
塞浦路斯
塞舌尔
沙特阿拉伯
圣巴泰勒米
圣诞岛
圣多美和普林西比
圣赫勒拿
圣基茨和尼维斯
圣卢西亚
圣马丁岛
圣马力诺
圣皮埃尔和密克隆群岛
圣文森特和格林纳丁斯
斯里兰卡
斯洛伐克
斯洛文尼亚
斯瓦尔巴和扬马延
斯威士兰
苏丹
苏里南
所罗门群岛
索马里
塔吉克斯坦
泰国
坦桑尼亚
汤加
特克斯和凯科斯群岛
特里斯坦-达库尼亚群岛
特立尼达和多巴哥
突尼斯
图瓦卢
土耳其
土库曼斯坦
托克劳
瓦利斯和富图纳
瓦努阿图
危地马拉
委内瑞拉
文莱
乌干达
乌克兰
乌拉圭
乌兹别克斯坦
希腊
西班牙
西撒哈拉
新加坡
新喀里多尼亚
新西兰
匈牙利
休达及梅利利亚
叙利亚
牙买加
亚美尼亚
也门
伊拉克
伊朗
以色列
意大利
印度
印度尼西亚
英国
英属维尔京群岛
英属印度洋领地
约旦
越南
赞比亚
泽西岛
乍得
直布罗陀
智利
中非共和国
*省份
*城市
*姓名
*电话
*单位
*职位
*邮箱
*请输入验证码
*验证码
B-hGARP mice
Strain Name
C57BL/6-Lrrc32tm1(LRRC32)Bcgen/Bcgen 
Common Name   B-hGARP mice
Background C57BL/6 Catalog number  110102
Related Genes 
LRRC32 (Leucine-Rich Repeat-Containing Protein 32), GARP (Glycoprotein-A repetitions predominant)
NCBI Gene ID
434215

mRNA expression analysis


from clipboard


Strain specific analysis of GARP gene expression in WT and B-hGARP mice by RT-PCR. Mouse Garp mRNA was detectable in splenocytes of wild-type (+/+) mice. Human GARP mRNA was detectable only in H/H, but not in +/+ mice. 

Protein expression analysis in spleen

from clipboard


Strain specific GARP expression analysis in wild-type C57BL/6 mice and homozygous B-hGARP mice by flow cytometry. Splenocytes were collected from wild-type and homozygous B-hGARP (H/H) mice, and analyzed by flow cytometry with species-specific GARP antibody. Mouse GARP was detectable in wild-type mice. Human GARP was exclusively detectable in homozygous B-hGARP but not wild-type mice.

Protein expression analysis in activated T cells

from clipboard


Strain specific GARP expression analysis in wild-type C57BL/6 mice and homozygous B-hGARP mice by flow cytometry. Splenocytes were collected from wild-type C57BL/6 mice and homozygous B-hGARP mice, stimulated with anti-CD3ε (2 μg/mL), anti-CD28(2 μg/mL) in vitro (stimulation for 24 hours). Mouse GARP was exclusively detectable in wild-type mice. Human GARP was exclusively detectable in homozygous B-hGARP mice but not in wild-type mice.

Protein expression analysis in platelet

from clipboard


Strain specific GARP expression analysis in homozygous B-hGARP mice by flow cytometry. Blood were isolated  from wild-type C57BL/6 mice and homozygous B-hGARP mice, and platelet were gated for mCD41 population and used for further analysis as indicated here. Human GARP was only detectable in homozygous homozygous B-hGARP mice.

Analysis of spleen leukocyte subpopulations in B-hGARP mice

from clipboard


Analysis of splenic leukocyte subpopulations by FACS. Splenocytes were isolated from female C57BL/6 and B-hGARP mice (n=3, 6 weeks-old) and analyzed by flow cytometry to assess leukocyte subpopulations. (A) Representative FACS plots gated on single live CD45+ cells for further analysis. (B) Results of FACS analysis. Percentages of T, B, NK cells, monocyte/macrophages, and DC were similar in homozygous B-hGARP mice and C57BL/6 mice, demonstrating that introduction of hGARP in place of its mouse counterpart does not change the overall development, differentiation, or distribution of these cell types in spleen. Values are expressed as mean ± SEM.


Analysis of spleen leukocyte subpopulations in B-hGARP mice


from clipboard


Analysis of splenic T cell subpopulations by FACS. Splenocytes were isolated from female C57BL/6 and B-hGARP mice (n=3, 6 weeks-old) and analyzed by flow cytometry for T cell subsets. (A) Representative FACS plots gated on CD3+ T cells and further analyzed. (B) Results of FACS analysis. Percentages of CD8+, CD4+, and Treg cells were similar in homozygous B-hGARP and C57BL/6 mice, demonstrating that introduction of hGARP in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in spleen. Values are expressed as mean ± SEM.

Analysis of blood leukocyte subpopulations in B-hGARP mice

from clipboard

from clipboard


Analysis of blood leukocyte subpopulations by FACS. Blood were isolated from female C57BL/6 and B-hGARP mice (n=3, 6 weeks-old) and analyzed by flow cytometry to assess leukocyte subpopulations. (A) Representative FACS plots gated on single live CD45+ cells for further analysis. (B) Results of FACS analysis. Percentages of T, B, NK cells, monocyte/macrophages, and DC were similar in homozygous B-hGARP mice and C57BL/6 mice, demonstrating that introduction of hGARP in place of its mouse counterpart does not change the overall development, differentiation, or distribution of these cell types in blood. Values are expressed as mean ± SEM.

Analysis of blood leukocyte subpopulations in B-hGARP mice

from clipboard


Analysis of blood T cell subpopulations by FACS.Blood were isolated from female C57BL/6 and B-hGARP mice (n=3, 6 weeks-old) and analyzed by flow cytometry for T cell subsets. (A) Representative FACS plots gated on CD3+ T cells and further analyzed. (B) Results of FACS analysis. Percentages of CD8+, CD4+, and Treg cells were similar in homozygous B-hGARP and C57BL/6 mice, demonstrating that introduction of hGARP in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in blood. Values are expressed as mean ± SEM.

Blood routine tests of B-hGARP mice

from clipboard


Blood routine tests of B-hGARP mice. Blood from female C57BL/6 and B-hGARP mice (n=6, 6 week-old, female) were collected and analyzed for CBC. Any measurement of B-hGARP mice in the panel were similar to C57BL/6, indicating that humanized mouse does not change blood cell composition and morphology. Values are expressed as mean ± SEM.

Blood chemistry of B-hGARP mice

from clipboard


Blood chemistry tests of B-hGARP mice. Serum from C57BL/6 and B-hGARP mice (n=6, 6 week-old, female) were collected and analyzed for levels of ALT, AST and other indicators in the panel. There was no differences on either measurement between C57BL/6 and humanized mouse, indicating that humanized mouse does not change ALT and AST levels or health of liver. Values are expressed as mean ± SEM.

Combination therapy of anti-mouse PD-1 antibody and anti-human GARP/latent-TGFβ1 antibody

from clipboard


Antitumor activity of anti-mouse PD-1 antibody combined with anti-human GARP/latent-TGFβ1 antibody in B-hGARP mice. (A) Anti-mouse PD-1 antibody combined with anti-human GARP/latent-TGFβ1 antibody (in house) inhibited MC38 tumor growth in B-hGARP mice. Murine colon cancer MC38 cells (5E5) were subcutaneously implanted into homozygous B-hGARP mice (female, 7-week-old, n=6). Mice were grouped when tumor volume reached approximately 50~70 mm3, at which time they were treated with anti-mouse PD-1 antibody and anti-human GARP/latent-TGFβ1 antibody with doses and schedules indicated in panel A. (B) Body weight changes during treatment. As shown in panel A, combination of anti-mPD-1 antibody and anti-human GARP/latent-TGFβ1 antibody were efficacious in controlling tumor growth in B-hGARP, demonstrating that the B-hGARP mice provide a powerful preclinical model for in vivo evaluation of anti-human GARP antibodies. Values are expressed as mean ± SEM.