请输入关键字
请输入关键字
订购
*国家
中国
美国
中国香港
中国澳门
中国台湾
阿尔巴尼亚
阿尔及利亚
阿根廷
阿拉伯联合酋长国
阿鲁巴
阿曼
阿塞拜疆
阿森松岛
埃及
埃塞俄比亚
爱尔兰
爱沙尼亚
安道尔
安哥拉
安圭拉
安提瓜和巴布达
奥地利
奥兰群岛
澳大利亚
巴巴多斯
巴布亚新几内亚
巴哈马
巴基斯坦
巴拉圭
巴勒斯坦领土
巴林
巴拿马
巴西
白俄罗斯
百慕大
保加利亚
北马里亚纳群岛
贝宁
比利时
冰岛
波多黎各
波兰
波斯尼亚和黑塞哥维那
玻利维亚
伯利兹
博茨瓦纳
不丹
布基纳法索
布隆迪
朝鲜
赤道几内亚
丹麦
德国
迪戈加西亚岛
东帝汶
多哥
多米尼加共和国
多米尼克
俄罗斯
厄瓜多尔
厄立特里亚
法国
法罗群岛
法属波利尼西亚
法属圭亚那
法属南部领地
梵蒂冈
菲律宾
斐济
芬兰
佛得角
福克兰群岛
冈比亚
刚果(布)
刚果(金)
哥伦比亚
哥斯达黎加
格恩西岛
格林纳达
格陵兰
格鲁吉亚
古巴
瓜德罗普
关岛
圭亚那
哈萨克斯坦
海地
韩国
荷兰
荷属加勒比区
荷属圣马丁
黑山
洪都拉斯
基里巴斯
吉布提
吉尔吉斯斯坦
几内亚
几内亚比绍
加拿大
加纳
加纳利群岛
加蓬
柬埔寨
捷克
津巴布韦
喀麦隆
卡塔尔
开曼群岛
科科斯(基林)群岛
科摩罗
科索沃
科特迪瓦
科威特
克罗地亚
肯尼亚
库克群岛
库拉索
拉脱维亚
莱索托
老挝
黎巴嫩
立陶宛
利比里亚
利比亚
联合国
列支敦士登
留尼汪
卢森堡
卢旺达
罗马尼亚
马达加斯加
马恩岛
马尔代夫
马耳他
马拉维
马来西亚
马里
马其顿
马绍尔群岛
马提尼克
马约特
毛里求斯
毛里塔尼亚
美国本土外小岛屿
美属萨摩亚
美属维尔京群岛
蒙古
蒙特塞拉特
孟加拉国
秘鲁
密克罗尼西亚
缅甸
摩尔多瓦
摩洛哥
摩纳哥
莫桑比克
墨西哥
纳米比亚
南非
南极洲
南乔治亚和南桑威奇群岛
南苏丹
瑙鲁
尼加拉瓜
尼泊尔
尼日尔
尼日利亚
纽埃
挪威
诺福克岛
帕劳
皮特凯恩群岛
葡萄牙
日本
瑞典
瑞士
萨尔瓦多
萨摩亚
塞尔维亚
塞拉利昂
塞内加尔
塞浦路斯
塞舌尔
沙特阿拉伯
圣巴泰勒米
圣诞岛
圣多美和普林西比
圣赫勒拿
圣基茨和尼维斯
圣卢西亚
圣马丁岛
圣马力诺
圣皮埃尔和密克隆群岛
圣文森特和格林纳丁斯
斯里兰卡
斯洛伐克
斯洛文尼亚
斯瓦尔巴和扬马延
斯威士兰
苏丹
苏里南
所罗门群岛
索马里
塔吉克斯坦
泰国
坦桑尼亚
汤加
特克斯和凯科斯群岛
特里斯坦-达库尼亚群岛
特立尼达和多巴哥
突尼斯
图瓦卢
土耳其
土库曼斯坦
托克劳
瓦利斯和富图纳
瓦努阿图
危地马拉
委内瑞拉
文莱
乌干达
乌克兰
乌拉圭
乌兹别克斯坦
希腊
西班牙
西撒哈拉
新加坡
新喀里多尼亚
新西兰
匈牙利
休达及梅利利亚
叙利亚
牙买加
亚美尼亚
也门
伊拉克
伊朗
以色列
意大利
印度
印度尼西亚
英国
英属维尔京群岛
英属印度洋领地
约旦
越南
赞比亚
泽西岛
乍得
直布罗陀
智利
中非共和国
*省份
*城市
*姓名
*电话
*单位
*职位
*邮箱
*请输入验证码
*验证码
B-hSIGLEC15 mice
Strain Name

C57BL/6N-Siglec15tm1(SIGLEC15)Bcgen/Bcgen

Common Name  B-hSIGLEC15 mice
Background C57BL/6N Catalog number  110121
Related Genes 
SIGLEC15 (sialic acid binding Ig like lectin 15)

mRNA expression analysis 



Strain specific analysis of SIGLEC15 gene expression in WT and B-hSIGLEC15 mice by RT-PCR. Mouse Siglec15 mRNA was detectable in splenocytes of wild-type (+/+) mice. Human SIGLEC15 mRNA was detectable only in H/H, but not in +/+ mice.


Protein expression analysis in macrophages



Strain specific SIGLEC15 expression analysis in homozygous B-hSIGLEC15 mice by flow cytometry. Peritoneal lavage fluids were collected from WT and homozygous B-hSIGLEC15 (H/H) mice, and analyzed by flow cytometry with anti-SIGLEC15 antibody (hSIGLEC15 Ab5 and 5G12 were made in house, and both cross-react with human and mouse SIGLEC15). Mouse SIGLEC15 was detectable in WT mice. Human SIGLEC15 was detectable in homozygous B-hSIGLEC15 mice.


Protein expression analysis in bone marrow-derived macrophages (BMDMs)



Strain specific SIGLEC15 expression analysis in homozygous B-hSIGLEC15 mice by flow cytometry. Bone marrow were collected from WT, homozygous B-hSIGLEC15 KO (H/H) and B-hSIGLEC15 (H/H) mice, stimulated with 10 ng/mL M-CSF and cultured for 9 days and analyzed by flow cytometry with anti-SIGLEC15 antibody (SIGLEC15 Ab6 and 5G12 antibody were made in house, and 5G12 cross-reacts with human and mouse SIGLEC15 while Ab6 specifically recognizes human SIGLEC15). Mouse SIGLEC15 was detectable in WT mice but not the B-Siglec15 KO mice(-/-). Human SIGLEC15 was detectable in bone marrow-derived macrophages (BMDMs) especially the M2 macrophages of homozygous B-hSIGLEC15 mice.


Antibody binding assay



Analysis of B-hSIGLEC15 MC38 by FACS. Flow cytometry analysis of the B-hSIGLEC15 MC38 was performed to assess anti-human SIGLEC15 antibody. Single live cells were gated and used for further analysis as indicated here. Human SIGLEC15 expression was detectable on B-hSIGLEC15 MC38 as evidenced by 5G12 (in house) binding vs isotype control.


Analysis of spleen leukocyte subpopulations in B-hSIGLEC15 mice



Analysis of splenic leukocyte subpopulations by FACS

Splenocytes were isolated from female C57BL/6 and B-hSIGLEC15 mice (n=3, 6 weeks-old) and analyzed by flow cytometry to assess leukocyte subpopulations. (A) Representative FACS plots gated on single live CD45+ cells for further analysis. (B) Results of FACS analysis. Percentages of T, B, NK cells, monocytes/macrophages, and DC were similar in homozygous B-hSIGLEC15 mice and C57BL/6 mice, demonstrating that introduction of hSIGLEC15 in place of its mouse counterpart does not change the overall development, differentiation, or distribution of these cell types in spleen. Values are expressed as mean ± SEM.


Analysis of spleen leukocyte subpopulations in B-hSIGLEC15 mice



Analysis of splenic T cell subpopulations by FACS

Splenocytes were isolated from female C57BL/6 and B-hSIGLEC15 mice (n=3, 6 weeks-old) and analyzed by flow cytometry for T cell subsets. (A) Representative FACS plots gated on TCRβ+ T cells and further analyzed. (B) Results of FACS analysis. Percentages of CD8+, CD4+, and Treg cells were similar in homozygous B-hSIGLEC15 and C57BL/6 mice, demonstrating that introduction of hSIGLEC15 in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in spleen. Values are expressed as mean ± SEM.


Analysis of lymph node leukocyte subpopulations in B-hSIGLEC15 mice


Analysis of lymph node leukocyte subpopulations by FACS

Lymph node were isolated from female C57BL/6 and B-hSIGLEC15 mice (n=3, 6 weeks-old) and analyzed by flow cytometry to assess leukocyte subpopulations. (A) Representative FACS plots gated on single live CD45+ cells for further analysis. (B) Results of FACS analysis. Percentages of T, B, NK cells, monocytes/macrophages, and DC were similar in homozygous B-hSIGLEC15 mice and C57BL/6 mice, demonstrating that introduction of hSIGLEC15 in place of its mouse counterpart does not change the overall development, differentiation, or distribution of these cell types in lymph node. Values are expressed as mean ± SEM.


Analysis of lymph node leukocyte subpopulations in B-hSIGLEC15 mice



Analysis of lymph node T cell subpopulations by FACS

Lymph node were isolated from female C57BL/6 and B-hSIGLEC15 mice (n=3, 6 weeks-old) and analyzed by flow cytometry for T cell subsets. (A) Representative FACS plots gated on TCRβ+ T cells and further analyzed. (B) Results of FACS analysis. Percentages of CD8+, CD4+, and Treg cells were similar in homozygous B-hSIGLEC15 and C57BL/6 mice, demonstrating that introduction of hSIGLEC15 in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in lymph node. Values are expressed as mean ± SEM.


Analysis of blood leukocyte subpopulations in B-hSIGLEC15 mice


Analysis of blood leukocyte subpopulations by FACS
Blood were isolated from female C57BL/6 and B-hSIGLEC15 mice (n=3, 6 weeks-old) and analyzed by flow cytometry to assess leukocyte subpopulations. (A) Representative FACS plots gated on single live CD45+ cells for further analysis. (B) Results of FACS analysis. Percentages of T, B, NK cells, monocytes/macrophages, and DC were similar in homozygous B-hSIGLEC15 mice and C57BL/6 mice, demonstrating that introduction of hSIGLEC15 in place of its mouse counterpart does not change the overall development, differentiation, or distribution of these cell types in blood. Values are expressed as mean ± SEM.


Analysis of blood leukocyte subpopulations in B-hSIGLEC15 mice



Analysis of blood T cell subpopulations by FACS

Blood were isolated from female C57BL/6 and B-hSIGLEC15 mice (n=3, 6 weeks-old) and analyzed by flow cytometry for T cell subsets. (A) Representative FACS plots gated on TCRβ+ T cells and further analyzed. (B) Results of FACS analysis. Percentages of CD8+, CD4+, and Treg cells were similar in homozygous B-hSIGLEC15 and C57BL/6 mice, demonstrating that introduction of hSIGLEC15 in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in blood. Values are expressed as mean ± SEM.


In vivo efficacy of anti-human SIGLEC15 antibody



Antitumor activity of anti-human SIGLEC15 antibody in B-hSIGLEC15 mice. (A) Anti-human SIGLEC15 antibody inhibited hSIGLEC15-MC38 tumor growth in B-hSIGLEC15 mice. Murine colon cancer hSIGLEC15-MC38 cells (5E5) were subcutaneously implanted into B-hSIGLEC15 mice (female, 7-8 week-old, n=5). Mice were grouped when tumor volume reached approximately 100 mm3, at which time they were treated with anti-human SIGLEC15 antibody with doses and schedules indicated in panel A. (B) Body weight changes during treatment. As shown in panel A, anti-human SIGLEC15 antibody 5G12 (in house) was efficacious in controlling tumor growth in a dose-dependent manner in B-hSIGLEC15 mice. Values are expressed as mean ± SEM.


In vivo efficacy of anti-human SIGLEC15 antibody


from clipboard

Antitumor activity of anti-human SIGLEC15 antibodies in B-hSIGLEC15 mice. (A) Anti-human SIGLEC15 antibodies inhibited hSIGLEC15-MC38 tumor growth in B-hSIGLEC15 mice. Murine colon cancer hSIGLEC15-MC38 cells (5E5) were subcutaneously implanted into B-hSIGLEC15 mice (female, 7-8 week-old, n=5). Mice were grouped when tumor volume reached approximately 100 mm3, at which time they were treated with anti-human SIGLEC15 antibodies with doses and schedules indicated in panel A. (B) Body weight changes during treatment. As shown in panel A, anti-human SIGLEC15 antibodies was efficacious in controlling tumor growth in B-hSIGLEC15 mice. Values are expressed as mean ± SEM. (All antibodies were provided by the clients)