请输入关键字
请输入关键字
订购
*国家
中国
美国
中国香港
中国澳门
中国台湾
阿尔巴尼亚
阿尔及利亚
阿根廷
阿拉伯联合酋长国
阿鲁巴
阿曼
阿塞拜疆
阿森松岛
埃及
埃塞俄比亚
爱尔兰
爱沙尼亚
安道尔
安哥拉
安圭拉
安提瓜和巴布达
奥地利
奥兰群岛
澳大利亚
巴巴多斯
巴布亚新几内亚
巴哈马
巴基斯坦
巴拉圭
巴勒斯坦领土
巴林
巴拿马
巴西
白俄罗斯
百慕大
保加利亚
北马里亚纳群岛
贝宁
比利时
冰岛
波多黎各
波兰
波斯尼亚和黑塞哥维那
玻利维亚
伯利兹
博茨瓦纳
不丹
布基纳法索
布隆迪
朝鲜
赤道几内亚
丹麦
德国
迪戈加西亚岛
东帝汶
多哥
多米尼加共和国
多米尼克
俄罗斯
厄瓜多尔
厄立特里亚
法国
法罗群岛
法属波利尼西亚
法属圭亚那
法属南部领地
梵蒂冈
菲律宾
斐济
芬兰
佛得角
福克兰群岛
冈比亚
刚果(布)
刚果(金)
哥伦比亚
哥斯达黎加
格恩西岛
格林纳达
格陵兰
格鲁吉亚
古巴
瓜德罗普
关岛
圭亚那
哈萨克斯坦
海地
韩国
荷兰
荷属加勒比区
荷属圣马丁
黑山
洪都拉斯
基里巴斯
吉布提
吉尔吉斯斯坦
几内亚
几内亚比绍
加拿大
加纳
加纳利群岛
加蓬
柬埔寨
捷克
津巴布韦
喀麦隆
卡塔尔
开曼群岛
科科斯(基林)群岛
科摩罗
科索沃
科特迪瓦
科威特
克罗地亚
肯尼亚
库克群岛
库拉索
拉脱维亚
莱索托
老挝
黎巴嫩
立陶宛
利比里亚
利比亚
联合国
列支敦士登
留尼汪
卢森堡
卢旺达
罗马尼亚
马达加斯加
马恩岛
马尔代夫
马耳他
马拉维
马来西亚
马里
马其顿
马绍尔群岛
马提尼克
马约特
毛里求斯
毛里塔尼亚
美国本土外小岛屿
美属萨摩亚
美属维尔京群岛
蒙古
蒙特塞拉特
孟加拉国
秘鲁
密克罗尼西亚
缅甸
摩尔多瓦
摩洛哥
摩纳哥
莫桑比克
墨西哥
纳米比亚
南非
南极洲
南乔治亚和南桑威奇群岛
南苏丹
瑙鲁
尼加拉瓜
尼泊尔
尼日尔
尼日利亚
纽埃
挪威
诺福克岛
帕劳
皮特凯恩群岛
葡萄牙
日本
瑞典
瑞士
萨尔瓦多
萨摩亚
塞尔维亚
塞拉利昂
塞内加尔
塞浦路斯
塞舌尔
沙特阿拉伯
圣巴泰勒米
圣诞岛
圣多美和普林西比
圣赫勒拿
圣基茨和尼维斯
圣卢西亚
圣马丁岛
圣马力诺
圣皮埃尔和密克隆群岛
圣文森特和格林纳丁斯
斯里兰卡
斯洛伐克
斯洛文尼亚
斯瓦尔巴和扬马延
斯威士兰
苏丹
苏里南
所罗门群岛
索马里
塔吉克斯坦
泰国
坦桑尼亚
汤加
特克斯和凯科斯群岛
特里斯坦-达库尼亚群岛
特立尼达和多巴哥
突尼斯
图瓦卢
土耳其
土库曼斯坦
托克劳
瓦利斯和富图纳
瓦努阿图
危地马拉
委内瑞拉
文莱
乌干达
乌克兰
乌拉圭
乌兹别克斯坦
希腊
西班牙
西撒哈拉
新加坡
新喀里多尼亚
新西兰
匈牙利
休达及梅利利亚
叙利亚
牙买加
亚美尼亚
也门
伊拉克
伊朗
以色列
意大利
印度
印度尼西亚
英国
英属维尔京群岛
英属印度洋领地
约旦
越南
赞比亚
泽西岛
乍得
直布罗陀
智利
中非共和国
*省份
*城市
*姓名
*电话
*单位
*职位
*邮箱
*请输入验证码
*验证码
B-NDG hIL15, FcγR KO mice
Strain Name 

NOD.CB17-PrkdcscidIl2rgtm1BcgenIl15tm1(IL15)BcgenFcgr1tm1Bcgen

Fcgr2btm1BcgenFcgr4tm1BcgenFcgr3tm1Bcgen/Bcgen

Common Name 

B-NDG hIL15, FcγR KO mice

Background B-NDG mice Catalog number 112653
Aliases 

IL15: IL-15
Fcgr1: CD64, FcgammaRI, IGGHAFC
Fcgr2b: CD32, F630109E10Rik, Fc[g]RII, FcgRII, Fcgr2, Fcgr2a, Fcr-2, Fcr-3, Ly-17, Ly-m20, LyM-1, Lym-1, fcRII
Fcgr4: 4833442P21Rik, CD16-2, FcgRIV, FcgammaRIV, Fcgr3a, Fcrl3
Fcgr3: CD16

Protein expression analysis

from clipboard

Strain specific FcγRs expression analysis in homozygous B-NDG hIL15 mice and B-NDG hIL15, FcγR KO mice by flow cytometry. Spleens were collected from  homozygous B-NDG hIL15 mice and B-NDG hIL15, FcγR KO mice, and analyzed by flow cytometry with four species-specific anti-FcγR antibodies. Mouse FcγRI, FcγRIIb, FcγRIII and FcγRIV were detectable in B-NDG hIL15 mice but not in B-NDG hIL15, FcγR KO mice.


Protein expression analysis

from clipboard


Strain specific IL15 expression analysis in B-NDG mice, homozygous B-NDG hIL15 mice and B-NDG hIL15, FcγR KO mice by ELISA. Serum was collected from male B-NDG mice (9-week-old) , homozygous B-NDG hIL15 mice (9-week-old) and B-NDG hIL15, FcγR KO mice (12-week-old), and analyzed by ELISA with species-specific IL15 antibody. Human IL15 was detectable in homozygous B-NDG hIL15 mice and B-NDG hIL15, FcγR KO mice but not in B-NDG mice. The expression level in B-NDG hIL15, FcγR KO mice was similar to that in B-NDG hIL15 mice. 

Analysis of leukocyte subpopulations in blood

from clipboard


Analysis of blood leukocyte subpopulations by flow cytometry. Blood were isolated from male B-NDG hIL15 mice and B-NDG hIL15, FcγR KO mice (n=3). Flow cytometry analysis of the leukocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of granulocytes, monocytes, macrophages and DCs in homozygous B-NDG hIL15, FcγR KO mice were similar to those in the B-NDG hIL15 mice, demonstrating that knock out of FcγRs does not change the overall development, differentiation or distribution of these cell types in blood. Values are expressed as mean ± SEM.

Analysis of leukocytes cell subpopulation in spleen

from clipboard


Analysis of spleen leukocyte subpopulations by flow cytometry. Splenocytes were isolated from male B-NDG hIL15 mice and B-NDG hIL15, FcγR KO mice (n=3). Flow cytometry analysis of the leukocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of granulocytes, monocytes, macrophages and DCs in homozygous B-NDG hIL15, FcγR KO mice were similar to those in the B-NDG hIL15 mice, demonstrating that knock out of FcγRs does not change the overall development, differentiation or distribution of these cell types in spleen. Values are expressed as mean ± SEM.


Antibody-binding assay using rituximab analog


from clipboard

Antibody-binding analysis of rituximab analog (in-house) in B-NDG mice, B-NDG hIL15 mice and B-NDG hIL15, FcγR KO mice by FACS. Blood were collected from B-NDG mice, B-NDG hIL15 mice and B-NDG hIL15, FcγR KO mice and analyzed by flow cytometry (male, 8-week-old, n=1). Results showed that rituximab analog (in-house) can bind to the CD45+ cells in B-NDG mice and B-NDG hIL15 mice, but can not bind to the cells in B-NDG hIL15, FcγR KO mice, indicating that the receptors of IgG antibody were not expressed on CD45+ cells of B-NDG hIL15, FcγR KO mice.  

In vivo efficacy of anti-human CD20 antibody in CDX model established with huNK-B-NDG hIL15, FcγR KO mice

from clipboard

Antitumor activity of rituximab analog (in-house) in huNK-B-NDG hIL-15, FcγR KO mice. B-luc Daudi cells (5×105) were intravenously injected into B-NDG hIL-15, FcyR KO mice. Tumor growth was observed by in vivo imaging systems (IVIS). After 3 days, mice were grouped when the fluorescence intensity reached approximately 1.2×106 p/sec, at which time human NK cells expanded in vitro (5×106) were engrafted into the mice and the mice were treated with anti-human CD20 antibody rituximab analog (in-house) twice a week for 4 weeks. Bone marrow was collected at the endpoint and the mouse CD45+ leukocytes were analyzed by flow cytometry. (A) Fluorescence intensity of the tumor cells; (B) Body weight; (C) The absolute number of mouse CD45+ cells in bone marrow. The results showed that the reconstituted human NK cells in B-NDG hIL-15, FcγR KO mice can inhibit the tumor growth. However, the combination of reconstituted human NK cells and rituximab analog in B-NDG hIL-15, FcγR KO mice can further inhibit tumor growth. Values are expressed as mean ± SEM. Significance was determined by one-way ANOVA test.  *P < 0.05, **P < 0.01, ***P < 0.001. 
The overage of this tumor model is 100%.    

Engraftment level of human immune cells and tumor cells in huNK-B-NDG hIL15, FcγR KO mice

from clipboard

Human NK cells were successfully reconstituted in B-NDG hIL-15, FcγR KO mice. Peripheral blood were harvested on Day 21 and DAY 30 (n=6). Engraftment level of human immune cells and hCD20+ tumor cells in the NK cell engrafted groups (G3 & G4) were analyzed by flow cytometry. The frequency of human NK cells reached to more than 60% on Day 21. The frequency and absolute number of human NK cells decreased significantly on Day 30. On Day 30, the frequency and absolute number of human CD20+ tumor cells in the untreated group (G3) were significantly higher than those in the treated group (G4). Values are expressed as mean ± SEM. 

Histopathological analysis of mice kidneys

from clipboard

Immunohistochemical staining of human CD20+ Daudi cells in kidney. The kidneys were isolated at the endpoint. Human CD20+ Daudi cells were detected with anti-hCD20 antibody (abcam, ab78237) by immunohistochemistry. (A) Representative images; (B) Percentages of hCD20+ area in kidneys. Results showed that the reconstituted human NK cells in B-NDG hIL-15, FcγR KO mice can inhibit the tumor growth. However, the combination of reconstituted human NK cells and rituximab analog can further inhibit tumor growth. Values are expressed as mean ± SEM. Significance was determined by one-way ANOVA test.  *P < 0.05, **P < 0.01, ***P < 0.001.